Ag Tech News

Scientists Develop System that Delivers Wheat Rust Predictions Directly to Farmers’ Phones

November 2019, TEXCOCO, Mexico — Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported this week in Environmental Research Letters, the new early warning system, the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current situation and forecast wheat rust up to a week in advance.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT). It works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK).

This is complemented by crowd-sourced information from the ATA-managed Farmers’ Hotline. The University of Cambridge and the UK Met Office then provide automated 7-day advance forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and national authorities. The information also gets passed on to researchers and farmers.

Timely alerts
“If there’s a high risk of wheat rust developing, farmers will get a targeted SMS text alert from the Farmers’ Hotline. This gives the farmer about three weeks to take action,” explained Dave Hodson, principal scientist with CIMMYT and co-author of the research study. The Farmers’ Hotline now has over four million registered farmers and extension agents, enabling rapid information dissemination throughout Ethiopia.

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Wheat rusts are fungal diseases that can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time — a bit like the flu virus,” explained Hodson.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, but the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

The cream of the crop
The early warning system puts Ethiopia at the forefront of early warning systems for wheat rust. “Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson. “It’s world-class science from the UK being applied to real-world problems.”

“This is an ideal example of how it is possible to integrate fundamental research in modelling from epidemiology and meteorology with field-based observation of disease to produce an early warning system for a major crop,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge and a co-author of the paper, adding that the approach could be adopted in other countries and for other crops.

“The development of the early warning system was successful because of the great collaborative spirit between all the project partners,” said article co-author Clare Sader-Allen, currently a regional climate modeller at the British Antarctic Survey.

“Clear communication was vital for bringing together the expertise from a diversity of subjects to deliver a common goal: to produce a wheat rust forecast relevant for both policy makers and farmers alike.”


Copyright © 2016 | All Rights Reserved.